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As part of the Bowland Trust project to produce teaching materials to support applications of 
mathematics, King's College, London developed a project in which students watched pizzas cool. 
The temperature of the pizzas is measured over time using data logging apparatus. 

The pizza shop owner has hired mathematical consultants to support them in maximising their 
market and hence their profit. Pizzas need to be developed fresh and hot. Many issues need to be 
addressed in this project, but two key questions emerge. How far can my deliveries reach and the 
pizzas remain sufficiently hot? Does it matter how I package them? This requires two experiments, 
firstly to determine the least acceptable temperature and secondly to determine the time taken to 
reach this temperature with different packaging. The first is simple and requires a volunteer 
prepared to eat small pieces of pizza as it cools. Generally, the volunteer is not hard to find! It is the 
second experiment which throws up a lot of interesting mathematics.

It is important to recognise that there is no pizza shop, nor will our report actually affect one. Our 
students are principally motivated by a desire to get on in their maths. Frequently scenarios are 
presented in class as problems being solved as if they were in the 'real world' that is, motivated by 
the requirements of the supposed scenario. Paul Dowling refers to this as the myth of reference. 
(Dowling, 1998). Clearly, pizza shop owners are unlikely to employ consultants with data logging 
apparatus and computer algebra systems for advise on their business plan. However, the scenario 
brings a welcome sense of fun, plus the warm smell of pizza to the mathematics classroom. This 
recognition is important. Details of the mathematical development could be argued as unnecessary 
for scenario and the mathematical development would be restricted. We need to retain our 
perspective on our real purpose, being to develop the maths. We do nonetheless have a setting 
which motivates the desire for quality outside our area of expertise. The two experiments require 
some serious scientific consideration. Indeed when we have presented this idea to adult teacher 
professionals, the focus has often been on critiquing the quality of the experimental set-up. Students 
in our trial schools did not. However, it clearly provides an opportunity to collaborate with science 
departments, who would wish to discuss the experimental design and improve it. Equally, an initial 
discussion about the maximising the profit of the pizza business throws up many issues (e.g. total 
profitability, cost/benefit of additional employees, food quality issues, etc.) that are evidently 
beyond the scope of the maths teacher. Instead of trying to 'deal' with them in a pretend fashion, 
these could be worked up seriously in the business studies department, where this expertise resides.

What do students see when they look at a graph? Activities involving story graphs are frequently 
designed to help the student visualise the change in one variable dependent on another. However, 
constructing the story is difficult and the simplifications in the graphical representation often strain 
credulity. The strange stories of children walking with constant speed being a case in point. I have 
frequently used real time distance logging apparatus with experienced teachers and have been 
struck by how often they walk towards it when the distance/time graph they are supposed to be 
tracking goes up or ask me where they should start when the graph clearly shows the distance at 
time zero. (See, Teachers TV, 2006). That there is a complicated link, often weak, between the 
scenario and the graph seems clear. Having, the possibility to collect the data in real time as a 
clearly known process is unfolding in front of the learners eyes (and nose!) provides a powerful 
link. 

Jeremy Rochele has developed SimCalc, a software simulator which produces cartoon images of 
motion activities (for example characters running at different speeds) together with a graph and 
table of values. This provides an example of multiple representations (see Ainsworth and 



VanLabeke, 2004) which is a key design precept of all graphing calculator technology. Rochele et al 
presents a outcomes from control and tr4eatment groups involved in using the SimCalc to study 
“the mathematics of change and variation”. They found “Although, on average, Treatment and 
Control group students progressed equally well on simple mathematics, the Treatment group gained 
more on complex mathematics. For example, at post test, Treatment students were more likely to 
use the correct idea of “parallel slope as same speed,” whereas Control students were more likely to 
have the misconception “intersection as same speed.” (Rochelle et al. 2007). Test items examined 
exactly the misconceptions that SimCalc is designed to address, so it would be interesting to 
compare the quality of the input received by the control group. Nonetheless, this seems to have been 
effective in generating a felt link between motion and graph. In our case the 
measured change is happening in reality (rather than virtual reality) which may perhaps create a 
stronger link, although this remains to be examined.

It is necessary to be clear about our purpose here. We intend to watch the change in temperature of a 
pizza over time, in order to find out how long it takes to reach a certain value. (In our experiments 
we found 48° to be the least acceptable temperature). Now this could take a long time, longer than 
we could reasonably continue measuring for (certainly in an ordinary lesson). So, we will see if we 
can find a rule for the rate of cooling, that will enable us to predict how long it will take. The 
predicting aspect requires the setting up and critiquing of a mathematical model, yet seems sensible 
enough in the context of the scenario. It is routine in classrooms to ask students to estimate. 
However students need to have the opportunity to develop their skills in estimation and critically 
reflect on the how they estimate the future temperature.

In the classroom we tried two different models. One featured the teacher controlling the experiment 
using one microwave oven placed at the front of the classroom with one probe and computer set-up. 
The second featured 6 groups of students taking turns to use one of two microwave ovens at either 
end of the room, each group having its own probe and computer. The data logging equipment 
produces a real time graph which shows how the temperature is decreasing with time. It also shows 
the temperature on screen. We produced a worksheet in which students are asked to predict the 
initial temperature (actually the point at which the temperature starts decreasing, to take account of 
the probe heating up). Next to each prediction is a space to state the basis on which the prediction 
was made. Initially this will be due to external factors (guess, how hot ovens get, etc.). As soon as 
the pizza comes out of the oven it was placed inside one of the packaging types and the probe 
inserted. (Mini deep pan pizzas were used to ensure that the temperature of the topping was being 
measured, rather than the base). Students had already made their prediction for the peak temperature 
(i.e. time zero), so the data logger was set running. Immediately students are asked to predict the 
temperature at the end of the first minute. The experiment is timed (we used a volunteer timekeeper 
to shout out 5-4-3-2-1 at the end of each minute). At the end of the first minute, the actual 
temperature is logged on the worksheet and a prediction is made for the end of the second minute. 
Now, some students start to look at the rate of cooling as an indicator to support their estimate for 
the end of the second minute. Also, students are asked to estimate the temperature at the end of the 
fifth minute. The experiment continues in this way for 10 minutes, each time students make future 
estimates. After five minutes they estimate for end of the sixth minute and the end of the tenth 
minute. By now, students are taking close account of the rate of change and using this to make 
better and better estimates for each successive minute. There is an are of quiet competitiveness and 
satisfaction when estimates are close or even perfect. (Reading are taken to one decimal place). 
After ten minutes, they estimate for 30 minutes, 120 minutes and 24 hours. Again the requirement 
to explain the basis for the estimation is emphasised. This last part requires students to share their 
mechanisms for estimation and discuss how they expect the temperature to change after the 
experiment has ended, i.e. into the never-to-be-known. It was gratifying that students happily 
watched a pizza warming in a microwave oven for two minutes then watched it cooling for 10 with 
rapt attention!



At the end of the experiment it is clear that the pizza is nowhere near down to the 48° minimum, so 
we need some way to work out when it will reach that temperature. The stage is now set for the key 
conversation: on what basis were the estimates made. Typically the cooling graph looks very linear. 
When asked how they estimated most considered answers were along the lines of “it was going 
down about 2.3° a minute” or sometimes “for the first five minutes, it was going down about 2.4° a 
minute and then for the next five minutes, about 2.1° a minute”, Both clear statements of linearity. 
Depending on the available equipment, the students either drew a graph by hand from the data on 
the worksheet, or had access to a dynamic graph within the data collection software. By tradition, a 
line of best fit seems an obvious thing to make, so the possibility of setting up a model comes out 
naturally. Starting with the simpler suggestion of “going down 0.8° a minute” we can ask, so what 
was the starting temperature? The software allows us to enter a function, to fit the data. So we start 
at the peak temperature (in the example it is 84°). So starting with f1(x) = 84 makes sense. Then it 
went down by 2.3° per minute so we make it f1(x)=84−2.3x. The set up makes this look very 
natural. But then when we hit return to draw our best fit line something is clearly wrong. It requires 
very little prompting to see that the 2.3° was per minute, but the data was gathered per second. So 
we can edit the function to show  f1(x)=84−(2.3/60)x. Happily the software gives an immediate 
response, so testing different theories for accommodating the minutes to second conversion can be 
done quickly by test and check. This feature keeps the discussion on track and avoids being 
sidelined by tricky numeracy issues. These can be returned to later. Often the very beginning of the 
experiment has an uneven cooling rate, so a little 'tweaking' of the model needs doing. Having seen 
the construction of the model, students feel in control of the coefficients. The can move it up or 
down a bit by changing the 'starts at' value and change the steepness by varying the 'per minute' 
value. They are very impressed by their capacity to make a near perfect fit.

Looking at the graph of our best fit function, we can see roughly when the temperature will be 
down at 48°, this may require extending the axes. However, immediately the estimating power of 
the function becomes clear. Students who hand drew their graphs immediately see the flexibility of 
the software. Doing this by eye is very useful as it reinforces the power of the function. This we can 
now move to as we know that this functions fits our data very well and we want to know when the 
value of this function is 48. That is  84−(2.3/60)x = 48. Immediately students recognise that this is 
an equation. Their knowledge of how to solve it can now be brought to bear. Powerfully the 
software includes a computer algebra system (CAS). Here we can state the equation. Then work on 
it in whichever way students suggest. Sensible and not so sensible suggestions can be tested and 
their outcome considered. That there are many routes to solution is very empowering here. In the 
CAS we simply type the equation and enter it. Then take simply state what we wish to do to both 
sides. (CAS rightly cannot accept a fraction of 2.3/60 and so writes it correctly as 23/600, 
generating another key intervention). In the example, we took away 48, then took away 36, then 
multiplied by 600, then divided by  -23. (A route suggested by a student). The CAS shows the result 
of an operation applied to the whole equation. This is quite a striking notion and has subtle 
advantages over the 'both sides' argument. That we have taken away 48 from the whole equation is 
more resonant with ideas of equivalence between statements. This does give us the potential for an 
interesting discussion later. This is about 15 and a half minutes. For more complicated functions we 
may not (yet) have the tools to find a solution, so it is useful to demonstrate the solve function in 
CAS. We simply define a function f(x):= 84−(2.3/60)x. (Note that we use := i.e. is defined as. The 
different uses of the equals sign are frequently glossed in classrooms and remain a key source of 
algebraic confusion for students). Here we are forced to recognise the difference between the 
function definition and the equation which we solved). It is good at this stage to test a few values 
(e.g. f(0), f(60) etc.) to reinforce students' confidence in the function. We can now use the CAS 
command solve(f(x)=48,x) and find the same answer as we found using the traditional method. This 
will become very powerful as more sophisticated functions are found to be necessary. 



There is considerable debate on the merits of computer algebra systems with keen advocates 
promoting their use against a concern for the clear requirement to effect substantial change in 
assessment systems predicated on routine solutions which CAS can perform for the user. (e.g. 
Bohm et al, 2004) In this context the CAS is being used to support and sustain the mathematical 
narrative. Discussing possible curriculum change in Australia, Driver suggests that CAS “... can be 
used to “do the messy algebra”. By allowing a student to focus on the selection of a problem 
solving strategy or appropriate procedure rather than the application of the strategy or procedure, 
and student can develop their higher-order thinking skills”. (Driver, 2008). This is our purpose here. 
Beyond the linear case, the graphical transposition and equation solving would be difficult and 
would certainly get in the way of the narrative flow. Even the linear case requires effective routine 
facility, which if not secure will change the focus of the narrative. It does nonetheless engage the 
student with the need for this facility and more clearly motivate its development at a later point.

Returning to the narrative, we now have function which fits our data, so we can test its predictive 
capabilities. At the end of the experiment, students estimated the temperature after longer periods. 
In discussion, the basis on which these estimates were made changed from the short term 
mechanism of the linear decrease. After 30 minutes and certainly after 120 minutes most students 
are suspecting that the rate of decrease will have slowed. Some students suspect that after 24 hours 
the pizza will only have reached room temperature. So, we can test these in the function. Student's 
commit their expectation of the outcome to paper, first. Neatly, the CAS can deal with an input like 
f(24*60*60) to test the 24 hour figure. The outcomes for 30 minutes, 120 minutes and 24 hours 
respectively, provide an increasing surprise and realisation that something is wrong. Going back to 
the graph and extending the horizontal axis progressively, provides a visual confirmation. Students 
are able to interpret the graph now that they have identified the relationship between the downward 
graph and the cooling pizza. They are, of course, very well aware that, left to their own devices 
overnight, pizzas do not continue cooling, freezing and ultimately exceeding absolute zero! So, they 
are well oriented to finding a function that fits the data, but does not continue to decrease in this 
way.

Lesh et al developed modeling activities for a range of groups from middle school students to 
graduate students, they found that, “Few students who worked on this version went through more 
than half of a modeling cycle; and, almost none persevered to the point where they could make even 
an educated guess regarding predicted gains. After producing “first-draft answers,” these
students did not feel any need to produce second- or third-draft answers”. (Lesh et al, 2008). They 
went on to develop their activities, but explicitly to present a second activity requiring a different 
analysis. The pizza scenario has the advantage that the first (linear) model is overwhelmingly 
favourite (with student and teacher participants) and the critique of this model is clearly grounded in 
participants existing knowledge of the scenario. However, the insight gained by reflecting on the 
basis for the estimates sets up the natural concern that the linear model isn't quite right. Hence, the 
second (and third) iteration appears as necessary development.

Hence, students are now free to explore different functions. The key feature they have seen is the 
ability to control the shape and position of the graph by varying the coefficients in the function. A 
base function such as f(x)=x2  The graph can then be dragged in all directions and scaled by 
dragging out. This shows the function in the completed square form, which is a very powerful form 
for transposing the graph. An added bonus here is developing the recognition that different forms of 
an equation are powerful in different ways. The completed square form often only being seen as a 
long winded way of solving an equation. f(x)=x2  is the most common next function for students as 
they are often aware of it's existence and perhaps conscious the shape of its graph, meeting the 
problems with the linear function. Once in control of the coefficients, students find a quadratic 
which accurately fits the data. They can then use CAS tools from before to solve the equation 
f(x)=48 and test the accuracy over the longer term. It becomes clear with this analysis that the 



function falls down in the longer term because it seems to suggest that pizzas will cool to a 
minimum and then start heating up again, becoming very hot indeed by the following day. Once 
again this does not accord with the students' common sense notion of how pizzas actually behave. 
Now, they have a very strongly formed mental image of the shape of the graph of the function they 
are looking for. In out lessons we restricted exploration to a palette of possibilities consisting of 
linear, quadratic, reciprocal and exponential function. However, the software can cope with other 
interesting functions, which we have tried out in teacher sessions. Notably, piecewise linear 
functions. These naturally accord with the descriptions of the variation students suggested i.e. A 
certain rate of decrease over a certain range, followed by a different rate of decrease over the next 
part of the range. With a final linear function of f(x)=room temperature after a certain period, this 
can be an excellent model. Clearly, a well constructed exponential will also provide an excellent 
model.

It is clear by this stage that we have far exceeded our requirement to find the time for the pizza to 
cool to 48°. However, we have developed our skills in finding and evaluating models for the 
cooling function. There is now a high degree of confidence that we can find the cooling time 
effectively in different situations. The experiment can now be repeated with different types of 
packaging. The the consultants are ready to report to the pizza shop owner. With the added 
calculation of the distance possible given a known average speed from the delivery vehicle, the 
problem becomes one which geographers and business studies specialists may be better able to 
support.

I have provided a detailed description of a classroom narrative. The structuring of the narrative is 
built around a mathematical modelling activity, which is itself couched in a realistic but fictitious 
scenario. The structure is carefully designed to continually provide the rationale for further 
development of the theory. There are two principle mathematical outcomes: (i) an engagement with 
the process of mathematical modelling per se. and (ii) functions and there graphs. 
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